Mathematical modelling of population dynamics in biomedical problems

Tomás Alarcón

Computational & Mathematical Biology Group
Centre de Recerca Matemàtica
talarcon@crm.cat
Outline

Population dynamics in biomedicine

Mathematical modelling of breast cancer dormancy

Modelling the effect of a quiescent sub-population: a mechanism for evolutionary escape

Multi-scale modelling of angiogenesis and tumour growth
Outline

Population dynamics in biomedicine

Mathematical modelling of breast cancer dormancy

Modelling the effect of a quiescent sub-population: a mechanism for evolutionary escape

Multi-scale modelling of angiogenesis and tumour growth
The remit of population dynamics is the study of how individuals of different types interact, compete for existing resources and evolve to adapt to changing conditions.
The remit of population dynamics is the study of how individuals of different types interact, compete for existing resources and evolve to adapt to changing conditions.

Many biomedical problems fit within this framework:

- The competition between normal and malignant cells in cancer for space and resources
- The interaction between the cells of the immune system and infected cells in viral infections
- Evolution of drug resistance
The remit of population dynamics is the study of how individuals of different types interact, compete for existing resources and evolve to adapt to changing conditions.

Many biomedical problems fit within this framework:
- The competition between normal and malignant cells in cancer for space and resources
- The interaction between the cells of the immune system and infected cells in viral infections
- Evolution of drug resistance

The aim of this talk is to illustrate how concepts and techniques from mathematical population dynamics can be used to address and shed some light on a number of issues relevant in different biomedical contexts.
Mathematical modelling using population dynamics

- A mathematical model of a population composed by different types of individuals keeps track of the evolution in time and space of the number or density of each one of the species as a function of a number of parameters: birth and death rates, metabolic rates, mutation rates, etc.
Mathematical modelling using population dynamics

- A mathematical model of a population composed by different types of individuals keeps track of the evolution in time and space of the number or density of each one of the species as a function of a number of parameters: birth and death rates, metabolic rates, mutation rates, etc.

- Different assumptions on how our model is parametrised define the type of model, its complexity and also its application scope:
Mathematical modelling using population dynamics

- A mathematical model of a population composed by different types of individuals keeps track of the evolution in time and space of the number or density of each one of the species as a function of a number of parameters: birth and death rates, metabolic rates, mutation rates, etc.

- Different assumptions on how our model is parametrised define the type of model, its complexity and also its application scope:
 - Homogeneous populations: Same parameters for all individuals within the population
Mathematical modelling using population dynamics

- A mathematical model of a population composed by different types of individuals keeps track of the evolution in time and space of the number or density of each one of the species as a function of a number of parameters: birth and death rates, metabolic rates, mutation rates, etc.

- Different assumptions on how our model is parametrised define the type of model, its complexity and also its application scope:
 - Homogeneous populations: Same parameters for all individuals within the population
 - Heterogeneous populations: Structured population models where parameters depend on a structure variable (e.g. type of individual, age, size, etc.)
Mathematical modelling using population dynamics

- A mathematical model of a population composed by different types of individuals keeps track of the evolution in time and space of the number or density of each one of the species as a function of a number of parameters: birth and death rates, metabolic rates, mutation rates, etc.

- Different assumptions on how our model is parametrised define the type of model, its complexity and also its application scope:
 - Homogeneous populations: Same parameters for all individuals within the population
 - Heterogeneous populations: Structured population models where parameters depend on a structure variable (e.g. type of individual, age, size, etc.)
 - Populations where eternal variables which control the model parameters: Multi-scale population models where the population dynamics must be supplemented with additional models of how the parameters depend on the external variables (e.g. control of cell-cycle by oxygen or signalling cues, control of death rates by drugs, etc.)
Mathematical modelling using population dynamics

- A mathematical model of a population composed by different types of individuals keeps track of the evolution in time and space of the number or density of each one of the species as a function of a number of parameters: birth and death rates, metabolic rates, mutation rates, etc.

- Different assumptions on how our model is parametrised define the type of model, its complexity and also its application scope:
 - Homogeneous populations: Same parameters for all individuals within the population
 - Heterogeneous populations: Structured population models where parameters depend on a structure variable (e.g. type of individual, age, size, etc.)
 - Populations where eternal variables which control the model parameters: Multi-scale population models where the population dynamics must be supplemented with additional models of how the parameters depend on the external variables (e.g. control of cell-cycle by oxygen or signalling cues, control of death rates by drugs, etc.)

- The different models have different scopes associated to the range of validity of the corresponding assumptions. Also they are increasingly complex both technically and conceptually. Which one we should apply depends on (i) the amount of information available and (ii) the type of question we aim to answer
Mathematical modelling using population dynamics

- A mathematical model of a population composed by different types of individuals keeps track of the evolution in time and space of the number or density of each one of the species as a function of a number of parameters: birth and death rates, metabolic rates, mutation rates, etc.

- Different assumptions on how our model is parametrised define the type of model, its complexity and also its application scope:
 - Homogeneous populations: Same parameters for all individuals within the population
 - Heterogeneous populations: Structured population models where parameters depend on a structure variable (e.g. type of individual, age, size, etc.)
 - Populations where eternal variables which control the model parameters: Multi-scale population models where the population dynamics must be supplemented with additional models of how the parameters depend on the external variables (e.g. control of cell-cycle by oxygen or signalling cues, control of death rates by drugs, etc.)

- The different models have different scopes associated to the range of validity of the corresponding assumptions. Also they are increasingly complex both technically and conceptually. Which one we should apply depends on (i) the amount of information available and (ii) the type of question we aim to answer

- The remaining of this talk is devoted to show examples of how these three frameworks are applied to three different problems of biomedical significance
Outline

Population dynamics in biomedicine

Mathematical modelling of breast cancer dormancy

Modelling the effect of a quiescent sub-population: a mechanism for evolutionary escape

Multi-scale modelling of angiogenesis and tumour growth
Mathematical modelling of breast cancer dormancy

- Tumour dormancy in cancer refers to an extended period of growth restriction of undetected metastases

1Willis et al. Cancer Res. 70, 4310-4317 (2010)
Mathematical modelling of breast cancer dormancy

- Tumour dormancy in cancer refers to an extended period of growth restriction of undetected metastases
- Late relapse of breast cancer can occur as late as 25 years after resection of the primary tumour

\[^{1}\text{Willis et al. Cancer Res. 70, 4310-4317 (2010)}\]
Mathematical modelling of breast cancer dormancy

- Tumour dormancy in cancer refers to an extended period of growth restriction of undetected metastases
- Late relapse of breast cancer can occur as late as 25 years after resection of the primary tumour
- Such long duration between resection and relapse is thought to be inexplicable from continual growth of secondary cancer

¹Willis et al. Cancer Res. 70, 4310-4317 (2010)
Mathematical modelling of breast cancer dormancy

- Tumour dormancy in cancer refers to an extended period of growth restriction of undetected metastases.
- Late relapse of breast cancer can occur as late as 25 years after resection of the primary tumour.
- Such long duration between resection and relapse is thought to be inexplicable from continual growth of secondary cancer.
- Three mechanisms for tumour dormancy have been hypothesised based on experimental models:

1Willis et al. Cancer Res. 70, 4310-4317 (2010)
Mathematical modelling of breast cancer dormancy

- Tumour dormancy in cancer refers to an extended period of growth restriction of undiscovered metastases.
- Late relapse of breast cancer can occur as late as 25 years after resection of the primary tumour.
- Such long duration between resection and relapse is thought to be inexplicable from continual growth of secondary cancer.
- Three mechanisms for tumour dormancy have been hypothesised based on experimental models:
 - Solitary cells which persist in a quiescent state for months or even years post-resection.

\[\text{Willis et al. Cancer Res. 70, 4310-4317 (2010)}\]
Mathematical modelling of breast cancer dormancy

- Tumour dormancy in cancer refers to an extended period of growth restriction of undetected metastases.
- Late relapse of breast cancer can occur as late as 25 years after resection of the primary tumour.
- Such long duration between resection and relapse is thought to be inexplicable from continual growth of secondary cancer.
- Three mechanisms for tumour dormancy have been hypothesised based on experimental models:
 - Solitary cells which persist in a quiescent state for months or even years post-resection.
 - Non-vascularised, non-angiogenic micro-metastases restricted to a size of 1 to 2 mm in diameter.

1Willis et al. Cancer Res. 70, 4310-4317 (2010)
Tumour dormancy in cancer refers to an extended period of growth restriction of undetected metastases.

Late relapse of breast cancer can occur as late as 25 years after resection of the primary tumour.

Such long duration between resection and relapse is thought to be inexplicable from continual growth of secondary cancer.

Three mechanisms for tumour dormancy have been hypothesised based on experimental models:

- Solitary cells which persist in a quiescent state for months or even years post-resection.
- Non-vascularised, non-angiogenic micro-metastases restricted to a size of 1 to 2 mm in diameter.
- Vascularised metastases that are held at an equilibrium size by the immune system.

1Willis et al. Cancer Res. 70, 4310-4317 (2010)
Mathematical modelling of breast cancer dormancy

- Tumour dormancy in cancer refers to an extended period of growth restriction of undetected metastases
- Late relapse of breast cancer can occur as late as 25 years after resection of the primary tumour
- Such long duration between resection and relapse is thought to be inexplicable from continual growth of secondary cancer
- Three mechanisms for tumour dormancy have been hypothesised based on experimental models:
 - Solitary cells which persist in a quiescent state for months or even years post-resection
 - Non-vascularised, non-angiogenic micro-metastases restricted to a size of 1 to 2 mm in diameter
 - Vascularised metastases that are held at an equilibrium size by the immune system
- By investigating a mathematical model and applying it to empirical data, we have identified that a small number of non-angiogenic micro-metastases as a possible mechanism which can explain relapse data

Summary of the model

- The model describes the stochastic dynamics of the homogeneous population of micro-metastases in the patient at time t post-resection: $n(t)$
Summary of the model

- The model describes the stochastic dynamics of the homogeneous population of micro-metastases in the patient at time t post-resection: $n(t)$
- At $t = 0$, the number of metastasis at resection, n_B, is assumed to be random distributed according to a Poisson distribution with parameter $E[n_B]$
Summary of the model

- The model describes the stochastic dynamics of the homogeneous population of micro-metastases in the patient at time t post-resection: $n(t)$
- At $t = 0$, the number of metastasis at resection, n_B, is assumed to be random distributed according to a Poisson distribution with parameter $E[n_B]$
- At any time either of the three following events can occur:
Summary of the model

- The model describes the stochastic dynamics of the homogeneous population of micro-metastases in the patient at time t post-resection: $n(t)$
- At $t = 0$, the number of metastasis at resection, n_B, is assumed to be random distributed according to a Poisson distribution with parameter $E[n_B]$
- At any time either of the following events can occur:
 - A new metastasis is seeded ($n(t) \rightarrow n(t) + 1$) by the cells disseminated by the existing micro-metastases. It occurs with probability rate λ

Parameter values are determined from estimates in the relevant literature and by fitting to relapse data (Early Breast Cancer Trialists Collaborative Group database) using Approximate Bayesian Computation subject to a number of statistics.
Summary of the model

- The model describes the stochastic dynamics of the homogeneous population of micro-metastases in the patient at time t post-resection: $n(t)$
- At $t = 0$, the number of metastasis at resection, n_B, is assumed to be random distributed according to a Poisson distribution with parameter $E[n_B]$.
- At any time either of the three following events can occur:
 - A new metastasis is seeded ($n(t) \rightarrow n(t) + 1$) by the cells disseminated by the existing micro-metastases. It occurs with probability rate λ.
 - Metastases disappear ($n(t) \rightarrow n(t) - 1$) with probability rate μ.
 - A growth ($n(t) \rightarrow G$) event causing escape from growth restriction such as eg genetic or epigenetic mutations inducing switch to the angiogenic phenotype which occurs at probability rate κ.
- Relapse occurs after a growth event in time τ.

The model is analysed by direct simulation of the outlined stochastic process (Gillespie algorithm) and by numerical solution of the corresponding differential equations.

Parameter values are determined from estimates in the relevant literature and by fitting to relapse data (Early Breast Cancer Trialists Collaborative Group data base) using Approximate Bayesian Computation subject to a number of statistics.
Summary of the model

- The model describes the stochastic dynamics of the homogeneous population of micro-metastases in the patient at time t post-resection: $n(t)$
- At $t = 0$, the number of metastasis at resection, n_B, is assumed to be random distributed according to a Poisson distribution with parameter $E[n_B]$
- At any time either of the three following events can occur:
 - A new metastasis is seeded ($n(t) \rightarrow n(t) + 1$) by the cells disseminated by the existing micro-metastases. It occurs with probability rate λ
 - Metastases disappear ($n(t) \rightarrow n(t) - 1$) with probability rate μ
 - A growth ($n(t) \rightarrow G$) event causing escape from growth restriction such as e.g. genetic or epigenetic mutations inducing switch to the angiogenic phenotype which occurs at probability rate κ

The model is analysed by direct simulation of the outlined stochastic process (Gillespie algorithm) and by numerical solution of the corresponding differential equations. Parameter values are determined from estimates in the relevant literature and by fitting to relapse data (Early Breast Cancer Trialists Collaborative Group database) using Approximate Bayesian Computation subject to a number of statistics.
Summary of the model

- The model describes the stochastic dynamics of the homogeneous population of micro-metastases in the patient at time t post-resection: $n(t)$

- At $t = 0$, the number of metastasis at resection, n_B, is assumed to be random distributed according to a Poisson distribution with parameter $E[n_B]$.

- At any time either of the three following events can occur:
 - A new metastasis is seeded ($n(t) \rightarrow n(t) + 1$) by the cells disseminated by the existing micro-metastases. It occurs with probability rate λ.
 - Metastases disappear ($n(t) \rightarrow n(t) - 1$) with probability rate μ.
 - A growth ($n(t) \rightarrow G$) event causing escape from growth restriction such as eg genetic or epigenetic mutations inducing switch to the angiogenic phenotype which occurs at probability rate κ.

- Relapse occurs after a growth event in time τ.

Summary of the model

- The model describes the stochastic dynamics of the homogeneous population of micro-metastases in the patient at time t post-resection: $n(t)$
- At $t = 0$, the number of metastasis at resection, n_B, is assumed to be random distributed according to a Poisson distribution with parameter $E[n_B]$
- At any time either of the three following events can occur:
 - A new metastasis is seeded ($n(t) \rightarrow n(t) + 1$) by the cells disseminated by the existing micro-metastases. It occurs with probability rate λ
 - Metastases disappear ($n(t) \rightarrow n(t) - 1$) with probability rate μ
 - A growth ($n(t) \rightarrow G$) event causing escape from growth restriction such as eg genetic or epigenetic mutations inducing switch to the angiogenic phenotype which occurs at probability rate κ
- Relapse occurs after a growth event in time τ
- The model is analysed by direct simulation of the outlined stochastic process (Gillespie algorithm) and by numerical solution of the corresponding differential equations
Summary of the model

- The model describes the stochastic dynamics of the homogeneous population of micro-metastases in the patient at time t post-resection: $n(t)$
- At $t = 0$, the number of metastasis at resection, n_B, is assumed to be random distributed according to a Poisson distribution with parameter $E[n_B]$
- At any time either of the three following events can occur:
 - A new metastasis is seeded ($n(t) \rightarrow n(t) + 1$) by the cells disseminated by the existing micro-metastases. It occurs with probability rate λ
 - Metastases disappear ($n(t) \rightarrow n(t) - 1$) with probability rate μ
 - A growth ($n(t) \rightarrow G$) event causing escape from growth restriction such as eg genetic or epigenetic mutations inducing switch to the angiogenic phenotype which occurs at probability rate κ
- Relapse occurs after a growth event in time τ
- The model is analysed by direct simulation of the outlined stochastic process (Gillespie algorithm) and by numerical solution of the corresponding differential equations
- Parameter values are determined from estimates in the relevant literature and by fitting to relapse data (Early Breast Cancer Trialists Collaborative Group data base) using Approximate Bayesian Computation subject to a number of statistics
Number of metastasis tend to one
Long-term dormancy is maintained is maintained by 1-5 micrometastases

This figure shows for all viable values of κ the frequency with which dormancy patients have less than or equal to 3, 5 or 10 metastases at 10 and 20 years post-resection. Dormancy patients surviving beyond 10 years have less than or equal to 5 metastases with a probability of at least 60% provided that the growth event has a half-life time of 69 years or less. If the growth event half-life time is of 23 years or less 80% of the patients have between 1 and 3 micrometastases.
Outline

Population dynamics in biomedicine

Mathematical modelling of breast cancer dormancy

Modelling the effect of a quiescent sub-population: a mechanism for evolutionary escape

Multi-scale modelling of angiogenesis and tumour growth
Evolutionary escape

- Evolution of resistance to drugs is a phenomenon observed in many pathological situations ranging from bacterial infections to cancer

Evolutionary escape

- Evolution of resistance to drugs is a phenomenon observed in many pathological situations ranging from bacterial infections to cancer
- A mechanism for the evolution of drug resistance is the so-called evolutionary escape

Evolutionary escape

- Evolution of resistance to drugs is a phenomenon observed in many pathological situations ranging from bacterial infections to cancer
- A mechanism for the evolution of drug resistance is the so-called evolutionary escape
- A prominent theoretical model to explain such phenomenon was put forward by Iwasa and co-workers²:

Evolutionary escape

- Evolution of resistance to drugs is a phenomenon observed in many pathological situations ranging from bacterial infections to cancer.
- A mechanism for the evolution of drug resistance is the so-called evolutionary escape.
- A prominent theoretical model to explain such phenomenon was put forward by Iwasa and co-workers:
 - Genetic mutations drive a process of random search in genome space.

Evolution of resistance to drugs is a phenomenon observed in many pathological situations ranging from bacterial infections to cancer.

A mechanism for the evolution of drug resistance is the so-called evolutionary escape.

A prominent theoretical model to explain such phenomenon was put forward by Iwasa and co-workers:\(^2\):
- Genetic mutations drive a process of random search in genome space.
- Drug acts as a selective pressure driving this random search towards genomes that furnish the surviving population with resistance to the drug.

Evolutionary escape

- Evolution of resistance to drugs is a phenomenon observed in many pathological situations ranging from bacterial infections to cancer.
- A mechanism for the evolution of drug resistance is the so-called evolutionary escape.
- A prominent theoretical model to explain such phenomenon was put forward by Iwasa and co-workers\(^2\):
 - Genetic mutations drive a process of random search in genome space.
 - Drug acts as a selective pressure driving this random search towards genomes that furnish the surviving population with resistance to the drug.
- We put forward an alternative mechanism based on a structured, heterogeneous population and the emergence of small sub-population of quiescent cells which do not proliferate but are insensitive to the drug\(^3\).

Although our model was originally formulated to study the effects of hypoxia on tumours under treatment, there are other areas in which our model may be relevant:

Bacterial persistence

Latent reservoir persistence in HIV

The model

- We consider three different types of individuals which differ in the way they respond to the treatment.
- Types 1 and 2 have similar proliferation and death rates when no drug is present.
- The drug is lethal to 2 and neutral to 1.
- The question we pose is under which circumstances the presence of a third type (type 3) of individual which stays in a dormant state (does not produce offspring) but it is insensitive to the drug can rescue the population from extinction.

Structure of the population

\[(a) \quad \quad \quad \quad (b) \quad \quad \quad \quad (c) \]
Quiescence rescues Model B from extinction

Simulation results for \(r_{12} = 0.5 \)
Competition dynamics

Fixation probability of a population that can undergo quiescence against a continuously-proliferating population

Squares: drug, circles: no drug.
Therefore ...

- Quiescence rescues a population under stress from extinction
Therefore ...

- Quiescence rescues a population under stress from extinction
- Quiescence gives an evolutionary advantage in the presence of drug
Therefore ...

- Quiescence rescues a population under stress from extinction
- Quiescence gives an evolutionary advantage in the presence of drug
- The interesting aspect of this mechanism is that it does not involve an increase in the net reproduction rate of the population, as opposed to the mechanisms proposed by Iwasa et al.
Outline

Population dynamics in biomedicine

Mathematical modelling of breast cancer dormancy

Modelling the effect of a quiescent sub-population: a mechanism for evolutionary escape

Multi-scale modelling of angiogenesis and tumour growth
Multi-scale Modelling of Vascular Tumour Growth in 3D

Schematic organisation of the model

T. Alarcón (CRM, Barcelona, Spain)
• This model is, by far, the more complex of the ones being discussed in this talk
This model is, by far, the more complex of the ones being discussed in this talk.

- This model couples:
- This model is, by far, the more complex of the ones being discussed in this talk.
- This model couples:
 - Blood flow, oxygen transport, vascular adaptation, and remodelling of the vascular network (angiogenesis).
This model is, by far, the more complex of the ones being discussed in this talk.

This model couples:

- Blood flow, oxygen transport, vascular adaptation, and remodelling of the vascular network (angiogenesis)
- Competition between normal and cancer cells for space and resources
- This model is, by far, the more complex of the ones being discussed in this talk
- This model couples:
 - Blood flow, oxygen transport, vascular adaptation, and remodelling of the vascular network (angiogenesis)
 - Competition between normal and cancer cells for space and resources
 - Models of a number of intracellular processes eg the coupling between extra-cellular oxygen and the cell-cycle machinery
This model is, by far, the more complex of the ones being discussed in this talk.

This model couples:

- Blood flow, oxygen transport, vascular adaptation, and remodelling of the vascular network (angiogenesis)
- Competition between normal and cancer cells for space and resources
- Models of a number of intracellular processes eg the coupling between extra-cellular oxygen and the cell-cycle machinery
- Secretion of signalling cues (eg VEGF)
This model is, by far, the more complex of the ones being discussed in this talk.

This model couples:

- Blood flow, oxygen transport, vascular adaptation, and remodelling of the vascular network (angiogenesis)
- Competition between normal and cancer cells for space and resources
- Models of a number of intracellular processes eg the coupling between extra-cellular oxygen and the cell-cycle machinery
- Secretion of signalling cues (eg VEGF)

In this model, the birth and death rates emerge from the intracellular models rather than being fitted from population data.
This model is, by far, the more complex of the ones being discussed in this talk.

This model couples:

- Blood flow, oxygen transport, vascular adaptation, and remodelling of the vascular network (angiogenesis)
- Competition between normal and cancer cells for space and resources
- Models of a number of intracellular processes eg the coupling between extra-cellular oxygen and the cell-cycle machinery
- Secretion of signalling cues (eg VEGF)

In this model, the birth and death rates emerge from the intracellular models rather than being fitted from population data.

The complexity of this model poses a barrier to its analysis but opens very interesting avenues for its application.
Image reconstruction

![Real vasculature](A)

![Virtual vasculature](B)

- **A**: Real vasculature
 - Inflow (pressures 35...45 mmHg)

- **B**: Virtual vasculature
 - Outflow (pressures 15...25 mmHg)
Evolution from vascular networks obtained from image reconstruction II

Tumour growth under reconstructed vasculature
The simulations shown in the previous slide constitute a proof-of-concept exercise.
The simulations shown in the previous slide constitute a proof-of-concept exercise.

- We are now ready to extract statistics related to vascular structure (e.g., microvascular density, distributions of radii, length, blood flow rates, etc.) and tumour evolution.
The simulations shown in the previous slide constitute a proof-of-concept exercise.

We are now ready to extract statistics related to vascular structure (e.g., microvascular density, distributions of radii, length, blood flow rates, etc.) and tumour evolution.

Such information constitutes a valuable tool to evaluate model predictions specially concerning new therapeutic protocols and interventions.
Conclusions

- We have shown how models of population dynamics may provide valuable insight into several biomedical problems.
Conclusions

- We have shown how models of population dynamics may provide valuable insight into several biomedical problems.
- By means of three particular examples we have illustrated different modelling approaches.
We have shown how models of population dynamics may provide valuable insight into several biomedical problems.

By means of three particular examples we have illustrated different modelling approaches.

The decision as to which one we must use in each case essentially depends on the amount of information available: constant parameters is a parsimonious assumption in the absence of further information but other choices are possible if more information becomes available.
Acknowledgements

- Modelling breast cancer dormancy
 - Lisa Willis (CoMPLEX, University College London)
 - Dr. Karen M. Page (Dep. Mathematics, University College London)
 - Dr. Trevor A. Graham (Cancer Research UK London Research Institute)
 - Prof. Ian P.M. Tomlinson (Wellcome Trust Centre for Human Genetics, Oxford)

- Modelling latent sub-populations
 - Prof. Henrik Jeldtoft Jensen (IMS & Dep. Mathematics, Imperial College London)

- Multi-scale modelling of vascular tumour growth
 - Holger Perfahl (University of Stuttgart & University of Nottingham)
 - Dr. Markus R. Owen (University of Nottingham)
 - Prof. Helen M. Byrne (OCCAM, University of Oxford & University of Nottingham)
 - Prof. Philip K. Maini (CMB & OCSB, University of Oxford)
 - Prof. Robert A. Gatenby (H. Lee Moffitt Cancer Centre and Research Institute, Tampa, Florida, USA)
Interested?

For more information log in to the web site of the CRM Computational & Mathematical Biology group:

http://www.crm.cat/BiologyHealth_Lines/defaultmathbiology.htm

or my personal web site

http://sites.google.com/site/tomasalarc

or email me at:

talarcon@crm.cat